
Topik Documentation
Release 0.2.2+0.g8727814.dirty

Topik development team

October 15, 2015

Contents

1 What’s a topic model? 3

2 Yet Another Topic Modeling Library 5
2.1 Contents . 5
2.2 Useful Topic Modeling Resources . 24

3 License Agreement 27
3.1 Indices and tables . 27
3.2 Footnotes . 27

Python Module Index 29

i

ii

Topik Documentation, Release 0.2.2+0.g8727814.dirty

Topik is a Topic Modeling toolkit.

Contents 1

Topik Documentation, Release 0.2.2+0.g8727814.dirty

2 Contents

CHAPTER 1

What’s a topic model?

The following three definitions are a good introduction to topic modeling:

• A topic model is a type of statistical model for discovering the abstract “topics” that occur in a collection of
documents 1.

• Topic models are a suite of algorithms that uncover the hidden thematic structure in document collections. These
algorithms help us develop new ways to search, browse and summarize large archives of texts 2.

• Topic models provide a simple way to analyze large volumes of unlabeled text. A “topic” consists of a cluster
of words that frequently occur together 3.

1 http://en.wikipedia.org/wiki/Topic_model.
2 http://www.cs.princeton.edu/~blei/topicmodeling.html
3 http://mallet.cs.umass.edu/topics.php

3

http://en.wikipedia.org/wiki/Topic_model
http://www.cs.princeton.edu/~blei/topicmodeling.html
http://mallet.cs.umass.edu/topics.php

Topik Documentation, Release 0.2.2+0.g8727814.dirty

4 Chapter 1. What’s a topic model?

CHAPTER 2

Yet Another Topic Modeling Library

Some of you may be wondering why the world needs yet another topic modeling library. There are already great topic
modeling libraries out there, see Useful Topic Modeling Resources. In fact topik is built on top of some of them.

The aim of topik is to provide a full suite and high-level interface for anyone interested in applying topic modeling.
For that purpose, topik includes many utilities beyond statistical modeling algorithms and wraps all of its features into
an easy callable function and a command line interface.

Topik‘s desired goals are the following:

• Provide a simple and full-featured pipeline, from text extraction to final results analysis and interactive visual-
izations.

• Integrate available topic modeling resources and features into one common interface, making it accessible to the
beginner and/or non-technical user.

• Include pre-processing data wrappers into the pipeline.

• Provide useful analysis and visualizations on topic modeling results.

• Be an easy and beginner-friendly module to contribute to.

2.1 Contents

2.1.1 Installation

Topik is meant to be a high-level interface for many topic modeling utilities (tokenizers, algorithms, visualizations...),
which can be written in different languages (Python, R, Java...). Therefore, the recommended and easiest way to install
Topik with all its features is using the package manager conda. Conda is a cross-platform, language agnostic tool for
managing packages and environments.

$ conda install -c memex topik

There is also the option of just installing the Python features with pip.

$ pip install topik

Warning: The pip installation option will not provide all the available features, e.g. the LDAvis R package will
not be available.

5

http://conda.pydata.org/docs

Topik Documentation, Release 0.2.2+0.g8727814.dirty

2.1.2 Introduction Tutorial

In this tutorial we will examine topik with a practical example: Topic Modeling for Movie Reviews.

Preparing The Movie Review Dataset

In this tutorial we are going to use the Sentiment Polarity Dataset Version 2.0 from Bo Pang and Lillian Lee.

$ mkdir doc_example
$ cd doc_example
$ curl -o review_polarity.tar.gz http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.gz
$ tar -zxf review_polarity.tar.gz

Instead of using the dataset for sentiment analysis, its initial purpose, we’ll perform topic modeling on the movie
reviews. For that reason, we’ll merge both folders pos and neg, to one named reviews:

$ mkdir reviews
$ mv txt_sentoken/pos/* txt_sentoken/neg/* reviews/

High-level interface

For quick, one-off studies, the command line interface allows you to specify minimal information and obtain topic
model plot output. For all available options, please run topik --help

$ topik --help

Usage: topik [OPTIONS]

Run topic modeling

Options:
-d, --data TEXT Path to input data for topic modeling [required]
-c, --field TEXT the content field to extract text from, or for

folders, the field to store text as [required]
-f, --format TEXT Data format provided: json_stream, folder_files,

large_json, solr, elastic
-m, --model TEXT Statistical topic model: lda, plsa
-o, --output TEXT Topic modeling output path
-t, --tokenizer TEXT Tokenize method to use: simple, collocations,

entities, mix
-n, --ntopics INTEGER Number of topics to find
--termite TEXT Whether to output a termite plot as a result
--ldavis TEXT Whether to output an LDAvis-type plot as a result
--help Show this message and exit.

To run this on our movie reviews data set:

$ topik -d reviews -c text

The shell command is a front end to run_model(), which is also accessible in python:

>>> from topik.run import run_model
>>> run_model("reviews", content_field="text")

6 Chapter 2. Yet Another Topic Modeling Library

http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://en.wikipedia.org/wiki/Sentiment_analysis
https://en.wikipedia.org/wiki/Topic_model

Topik Documentation, Release 0.2.2+0.g8727814.dirty

Custom topic modeling flow

For interactive exploration and more efficient, involved workflows, there also exists a Python API for using each
part of the topic modeling workflow. There are four phases to topic modeling with topik: data import, tokeniza-
tion/vectorization, modeling and visualization. Each phase is modular, with several options available to you for each
step.

An example complete workflow would be the following:

>>> from topik import read_input, registered_models
>>> raw_data = read_input("reviews", content_field="text")
>>> tokenized_corpus = raw_data.tokenize()
>>> n_topics = 10
>>> model = registered_models["LDA"](tokenized_corpus, n_topics)
>>> from topik.viz import Termite
>>> termite = Termite(model.termite_data(n_topics), "Termite Plot")
>>> termite.plot('termite.html')

2.1.3 Usage in Python

Data Import

Data import loads your data from some external representation into an iterable, internal representation for Topik. The
main front end for importing data is the read_input() function:

>>> from topik import read_input
>>> corpus = read_input(source="data_file.json", content_field="text")

read_input() is a front-end to several potential reader backends. Presently, read_input() attempts to recog-
nize which backend to use based on some characteristics of the source string you pass in. These criteria are:

• ends with .js or .json: treat as JSON stream filename first, fall back to “large JSON” (such as file generated by
esdump).

• contains 8983: treat as solr connection address (8983 is the default solr port).

• contains 9200: treat as Elasticsearch connection address (9200 is the default Elasticsearch port).

• result of os.path.splitext(source)[1] is “”: treat as folder of files. Each file is considered raw text, and its contents
are stored under the key given by content_field. Files may be gzipped.

Any of the backends can also be forced by passing the source_type argument with one of the following string argu-
ments:

• solr

• elastic

• json_stream

• large_json

• folder

The content_field is a mandatory argument that in most cases specifies where the actual content to be analyzed
will be drawn from. For all hierarchical data sources (everything except folders), this accesses some subfield of the
data you feed in.

2.1. Contents 7

Topik Documentation, Release 0.2.2+0.g8727814.dirty

JSON additional options

For JSON stream and “large JSON” inputs, an additional keyword argument may be passed, json_prefix, which
is the period-separated path leading to the single content field. This is for content fields not at the root level of the
JSON document. For example, given the JSON content:

[{"nested": {"dictionary": {"text": "I am the text you're looking for."} } }]

You would read using the following json_prefix argument:

>>> corpus = read_input(source="data_file.json", content_field="text",
json_prefix="nested.dictionary")

Elasticsearch additional options and notes

The Elasticsearch importer expects a full string specifying the Elasticsearch server. This string at a minimum must
contain both the server address and the index to access (if any). All results returned from the Elasticsearch query
contain only the contents of the ‘_source’ field returned from the query.

>>> corpus = read_input(source="https://localhost:9200", index="test_index", content_field="text")

Extra arguments passed by keyword are passed to the Elasticsearch instance creation. This can be used to pass
additional login parameters, for example, to use SSL:

>>> corpus = read_input(source="https://user:secret@localhost:9200",
index="test_index", content_field="text", use_ssl=True)

The source argument for Elasticsearch also supports multiple servers, though this requires that you manually specify
the ‘elastic’ source_type:

>>> corpus = read_input(source=["https://server1", "https://server2"],
index="test_index", source_type="elastic", content_field="text")

For more information on server options, please refer to Elasticsearch’s documentation.

Extra keyword arguments are also passed to the scroll helper that returns results. Of special note here, an additional
query keyword argument can be passed to limit the records imported from the server. This query must follow the
Elasticsearch query DSL. For more information on Elasticsearch query DSL, please refer to Elasticsearch’s DSL docs.

>>> query = "{"filtered": {"query": {"match": { "tweet": "full text search"}}}}"
>>> corpus = read_input(source="https://localhost:9200", index="test_index",

content_field="tweet", query=query)

Output formats

Output formats are how your data are represented to further processing and modeling. To ensure a uniform interface,
output formats implement the interface described by CorpusInterface. Presently, two such backends are imple-
mented: DictionaryCorpus and ElasticSearchCorpus. Available outputs can be examined by checking
the keys of the registered_outputs dictionary:

>>> from topik import registered_outputs
>>> list(registered_outputs.keys())

The default output is the DictionaryCorpus. No additional arguments are necessary. DictionaryCorpus
stores everything in a Python dictionary. As such, it is memory intensive. All operations done with a

8 Chapter 2. Yet Another Topic Modeling Library

https://elasticsearch-py.readthedocs.org/en/master/
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

Topik Documentation, Release 0.2.2+0.g8727814.dirty

DictionaryCorpus block until complete. DictionaryCorpus is the simplest to use, but it will ultimately
limit the size of analyses that you can perform.

The ElasticSearchCorpus can be specified to read_input() using the output_type argument. It must
be accompanied by another keyword argument, output_args, which should be a dictionary containing connection
details and any additional arguments.

>>> output_args = {"source": "localhost", "index": "destination_index"}
>>> raw_data = read_input("test_data.json", output_type='elastic',

output_args=output_args, content_field="text")

ElasticSearchCorpus stores everything in an Elasticsearch instance that you specify. Operations do not block,
and have “eventual consistency”: the corpus will eventually have all of the documents you sent available, but not
necessarily immediately after the read_input function returns. This lag time is due to Elasticsearch indexing the data
on the server side.

Synchronous wait

As mentioned above, some output formats are not immediately ready for consumption after loading data. For example,
after sending data to Elasticsearch, Elasticsearch will take some time to index that data. Until that indexing is complete,
that data will not show up in iterations over the corpus. To force your program to wait for this to finish, use the
synchronous_wait argument to read_input:

>>> output_args = {"source": "localhost", "index": "destination_index"}
>>> raw_data = read_input("test_data.json", output_type='elastic',

output_args=output_args, content_field="text",
synchronous_wait=30)

This example will wait up to 30 seconds for the Elasticsearch indexing to stabilize. This is evaluated as the point at
which the number of documents in the output has not changed after 1 second. If the number of documents has not
stabilized after the synchronous wait period, you will get a warning message, but execution will proceed.

This is a property only of output formats. Input has no wait associated with it, because the source is assumed to be
“complete” when you ask for it. Please make sure that this is true, or your results will be ill-defined and impossible to
reproduce.

Saving and loading corpora

The output object of any read_input() step is saveable and loadable. This allows you to quickly get back to any
filtered state you may have applied to some larger corpus, and also ensures that the corpus you load with a model is
consistent with the corpus that was used to create that model. To save a corpus, call its save() method:

>>> raw_data.save("output_filename")

The file format of the saved file is JSON. Depending on the exact class that your corpus is, more or less data may be
saved to this JSON file. For example, the DictionaryCorpus class saves all of its corpus data to this JSON file,
and can be quite large. The ElasticsearchCorpus class saves only connection details and filtering metadata to
this JSON file, and is much smaller.

Loading corpora is achieved using the load_persisted_corpus() function. This function returns the appropri-
ate Corpus object, based on metadata in the JSON file.

>>> from topik.intermediaries.raw_data import load_persisted_corpus >>>
raw_data = load_persisted_corpus("output_filename")

2.1. Contents 9

Topik Documentation, Release 0.2.2+0.g8727814.dirty

Tokenizing and Vectorizing

The next step in topic modeling is to break your documents up into individual terms. This is called tokenization.
Tokenization is done using the tokenize() method on a Corpus object (returned from read_input()):

>>> tokenized_corpus = raw_data.tokenize()

Note on tokenize output

The tokenize() method returns a new object, presently of the DigestedDocumentCollection type. Behind
the scenes, the tokenize() method is storing the tokenized text alongside your corpus, using whatever storage
backend you have. This is an in-place modification of that object. The new object serves two purposes:

• It iterates over the particular tokenized representation of your corpus. You may have multiple tokenizations
associated with a single corpus. The object returned from the tokenize function tracks the correct one.

• It also performs vectorization on the fly, counting the number of words in each document, and returning a
representation of each document as a bag of words (list of tuples, with each tuple being (word_id, word_count).
This is generally the desired input to any topic model.

Make sure you assign this new object to a new variable. It is what you want to feed into the topic modeling step.

Available methods

The tokenize method accepts a few arguments to specify a tokenization method and control behavior therein. The
available tokenization methods are available in the tokenizer_methods dictionary. The presently available meth-
ods are:

• “simple”: (default) lowercases input text and extracts single words. Uses Gensim.

• “collocation”: Collects bigrams and trigrams in addition to single words. Uses NLTK.

• “entities”: Extracts noun phrases as entities. Uses TextBlob.

• “mixed”: first extracts noun phrases as entities, then follows up with simple tokenization for single words. Uses
TextBlob.

All methods accept a keyword argument stopwords, which are words that will be ignored in tokenization. These are
words that add little content value, such as prepositions. The default, None, loads and uses gensim’s STOPWORDS
collection.

Collocation tokenization

Collocation tokenization collects phrases of words (pairs and triplets, bigrams and trigrams) that occur together often
throughout your collection of documents. There are two steps to tokenization with collocation: establishing the
patterns of bigrams and trigrams, and subsequently tokenizing each document individually.

To obtain the bigram and trigram patterns, use the collect_bigrams_and_trigrams() function:

>>> from topik.tokenizers import collect_bigrams_and_trigrams
>>> patterns = collect_bigrams_and_trigrams(corpus)

Parameterization is done at this step, prior to tokenization of the corpus. Tweakable parameters are:

• top_n: limit results to a maximum number

• min_length: the minimum length that any single word can be

10 Chapter 2. Yet Another Topic Modeling Library

Topik Documentation, Release 0.2.2+0.g8727814.dirty

• min_bigram_freq: the minimum number of times a pair of words must occur together to be included

• min_trigram_freq: the minimum number of times a triplet of words must occur together to be included

>>> patterns = collect_bigrams_and_trigrams(corpus, min_length=3, min_bigram_freq=3, min_trigram_freq=3)

For small bodies of text, you’ll need small freq values, but this may be correspondingly “noisy.”

Next, feed the patterns into the tokenize() method of your corpus object:

>>> tokenized_corpus = raw_data.tokenize(method="collocation", patterns=patterns)

Entities tokenization

We refer to entities as noun phrases, as extracted by the TextBlob library. Like collocation tokenization, entities
tokenization is a two-step process. First, you establish noun phrases using the collect_entities() function:

>>> from topik.tokenizers import collect_entities
>>> entities = collect_entities(corpus)

You can tweak noun phrase extraction with a minimum and maximum occurrence frequency. This is the frequency
across your entire corpus of documents.

>>> entities = collect_entities(corpus, freq_min=4, freq_max=10000)

Next, tokenize the document collection:

>>> tokenized_corpus = raw_data.tokenize(method="entities", entities=entities)

Mixed tokenization

Mixed tokenization employs both the entities tokenizer and the simple tokenizer, for when the entities tokenizer is
overly restrictive, or for when words are interesting both together and apart. Usage is similar to the entities tokenizer:

>>> from topik.tokenizers import collect_entities
>>> entities = collect_entities(corpus)
>>> tokenized_corpus = raw_data.tokenize(method="mixed", entities=entities)

Topic modeling

Topic modeling performs some mathematical modeling of your input data as a (sparse) matrix of which documents
contain which words, attempting to identify latent “topics”. At the end of modeling, each document will have a mix
of topics that it belongs to, each with a weight. Each topic in turn will have weights associated with the collection of
words from all documents.

Currently, Topik provides interfaces to or implements two topic modeling algorithms, LDA (latent dirichlet allocation)
and PLSA (probablistic latent semantic analysis). LDA and PLSA are closely related, with LDA being a slightly more
recent development. The authoritative sources on LDA and PLSA are Blei, Ng, Jordan (2003), and Hoffman (1999),
respectively.

Presently, all topic models require you to specify your desired number of topics as input to the modeling process. With
too many topics, you will overfit your data, making your topics difficult to make sense of. With too few, you’ll merge
topics together, which may hide important differences. Make sure you play with the ntopics parameter to come up
with the results that are best for your collection of data.

2.1. Contents 11

https://textblob.readthedocs.org/en/dev/
http://jmlr.csail.mit.edu/papers/v3/blei03a.html
http://www.cs.brown.edu/people/th/papers/Hofmann-UAI99.pdf

Topik Documentation, Release 0.2.2+0.g8727814.dirty

To perform topic modeling on your tokenized data, select a model class from the registered_models dictionary,
or simply import a model class directly, and instantiate this object with your corpus and the number of topics to model:

>>> from topik.models import registered_models, LDA
>>> model = registered_models["LDA"](tokenized_data, 4)
>>> model = LDA(tokenized_data, 4)

Presently, training the model is implicit in its instantiation. In other words, when you create an object using the code
above, the data are loaded into the model, and the analysis to identify topics is performed immediately. That means
that instantiating an object may take some time. Progress indicators are on our road map, but for now, please be patient
and wait for your results.

Saving and loading results

The model object has a save() method. This method saves a JSON file that describes how to load the rest of the
data for your model and for your corpus. The load_model() function will read that JSON file, and recreate the
necessary corpus and model objects to leave you where you saved. Each model has its own binary representation, and
each corpus type has its own storage backend. The JSON file saved here generally does not include corpus data nor
model data, but rather is simply instructions on where to find those data. If you move files around on your hard disk,
make sure to pick up everything with the JSON file.

>>> model.save("test_data.json")
>>> from topik.models import load_model
>>> model = load_model("test_data.json")
>>> model.get_top_words(10)

Viewing results

Each model supports a few standard outputs for examination of results:

• List of top N words for each topic

• Termite plots

• LDAvis-based plots

– topik’s LDAvis-based plots use the pyLDAvis module, which is itself a

Python port of the R_ldavis library. The visualization consists of two linked, interactive views. On the left is a
projection of the topics onto a 2-dimensional space, where the area of each circle represents that topic’s relative
prevalence in the corpus. The view on the right shows details of the composition of the topic (if any) selected
in the left view. The slider at the top of the right view adjusts the relevance metric used when ranking the words
in a topic. A value of 1 on the slider will rank terms by their probabilities for that topic (the red bar), whereas a
value of 0 will rank them by their probabilities for that topic divided by their probabilities for the overall corpus
(red divided by blue).

Example syntax for these:

>>> model.get_top_words(topn=10)

>>> from topik.viz import Termite
>>> termite = Termite(lda.termite_data(n_topics), "Termite Plot")
>>> termite.plot(os.path.join(dir_path, 'termite.html'))

>>> from topik.viz import LDAvis
>>> raw_data = read_input("reviews", content_field=None)
>>> tokenized_corpus = raw_data.tokenize()

12 Chapter 2. Yet Another Topic Modeling Library

Topik Documentation, Release 0.2.2+0.g8727814.dirty

>>> n_topics = 10
>>> model = registered_models["LDA"](tokenized_corpus, n_topics)
>>> from topik.viz import plot_lda_vis
>>> plot_lda_vis(model.to_py_lda_vis())

Each model is free to implement its own additional outputs - check the class members for what might be available.

2.1.4 Development Guide

Topik has been designed to be extensible at each of the four steps of topic modeling:

• data import

• tokenization / vectorization

• topic modeling

• visualization

Each of these steps are designed using abstract interfaces to guide extension development and to make creation of
pluggable user interfaces feasible. The general layout of topik is the following:

• __init__.py imports registered class dictionaries and functions from each folder

• a folder (python package) for each step

– base???.py

* abstract interface to be implemented by any concrete classes

* register function that is used as a decorator to register classes

* dictionary of registered classes for this step (global variable)

– any concrete implementations of the abstract classes, each in their own .py file

– __init__.py imports each of the concrete implementations, so that they are registered

External code can hook into the dictionary of registered methods using the appropriate register decorator function.
This decorator will execute when the foreign code is first run, so make sure that you import your module before
requesting the dictionary of registered classes for a given step.

For general command line usage, it is probably easier to directly import classes from the folder structure. The regis-
tered dictionary approach makes dynamic UI creation easier, but it hinders autocompletion. An intermediate approach
would be to assign the results of dictionary access to a variable before instantiating the class. For example,

>>> # one-shot, but autocompletion of class arguments doesn't work
>>> model = registered_models["LDA"](tokenized_data, 5)

>>> model_class = registered_models["LDA"]
>>> # Autocompletion of class arguments should work here
>>> model = model_class(tokenized_data, 5)

>>> # import model implementation directly:
>>> from topik.models import LDA
>>> # Autocompletion of class arguments should work here
>>> model = LDA(tokenized_data, 5)

2.1. Contents 13

Topik Documentation, Release 0.2.2+0.g8727814.dirty

2.1.5 topik package

Subpackages

topik.intermediaries package

Submodules

topik.intermediaries.digested_document_collection module

topik.intermediaries.persistence module This file handles the storage of data from loading and analysis.

More accurately, the files written and read from this file describe how to read/write actual data, such that the actual
format of any data need not be tightly defined.

class topik.intermediaries.persistence.Persistor(filename=None)
Bases: object

get_corpus_dict()

get_model_details(model_id)

list_available_models()

load_data(filename)

persist_data(filename)

store_corpus(data_dict)

store_model(model_id, model_dict)

topik.intermediaries.raw_data module This file is concerned with providing a simple interface for data stored in
Elasticsearch. The class(es) defined here are fed into the preprocessing step.

class topik.intermediaries.raw_data.CorpusInterface
Bases: object

append_to_record(record_id, field_name, field_value)
Used to store preprocessed output alongside input data.

Field name is destination. Value is processed value.

classmethod class_key()
Implement this method to return the string ID with which to store your class.

filter_string

get_date_filtered_data(start, end, field)

get_generator_without_id(field=None)
Returns a generator that yields field content without doc_id associate

save(filename, saved_data=None)
Persist this object to disk somehow.

You can save your data in any number of files in any format, but at a minimum, you need one json file that
describes enough to bootstrap the loading prcess. Namely, you must have a key called ‘class’ so that upon
loading the output, the correct class can be instantiated and used to load any other data. You don’t have to
implement anything for saved_data, but it is stored as a key next to ‘class’.

14 Chapter 2. Yet Another Topic Modeling Library

Topik Documentation, Release 0.2.2+0.g8727814.dirty

synchronize(max_wait, field)
By default, operations are synchronous and no additional wait is necessary. Data sources that are asyn-
chronous (ElasticSearch) may use this function to wait for “eventual consistency”

tokenize(method=’simple’, synchronous_wait=30, **kwargs)
Convert data to lowercase; tokenize; create bag of words collection.

Output from this function is used as input to modeling steps.

raw_data: iterable corpus object containing the text to be processed. Each iteration call should return
a new document’s content.

tokenizer_method: string id of tokenizer to use. For keys, see topik.tokenizers.tokenizer_methods
(which is a dictionary of classes)

kwargs: arbitrary dicionary of extra parameters. These are passed both to the tokenizer and to the
vectorizer steps.

class topik.intermediaries.raw_data.DictionaryCorpus(content_field, iterable=None,
generate_id=True, ref-
erence_field=None, con-
tent_filter=None)

Bases: topik.intermediaries.raw_data.CorpusInterface

append_to_record(record_id, field_name, field_value)

classmethod class_key()

filter_string

get_date_filtered_data(start, end, field=’year’)

get_field(field=None)
Get a different field to iterate over, keeping all other details.

get_generator_without_id(field=None)

import_from_iterable(iterable, content_field, generate_id=True)

iterable: generally a list of dicts, but possibly a list of strings This is your data. Your dictionary struc-
ture defines the schema of the elasticsearch index.

save(filename, saved_data=None)

class topik.intermediaries.raw_data.ElasticSearchCorpus(source, index, content_field,
doc_type=None, query=None,
iterable=None, fil-
ter_expression=’‘, **kwargs)

Bases: topik.intermediaries.raw_data.CorpusInterface

append_to_record(record_id, field_name, field_value)

classmethod class_key()

convert_date_field_and_reindex(field)

filter_string

get_date_filtered_data(start, end, field=’date’)

get_field(field=None)
Get a different field to iterate over, keeping all other connection details.

get_generator_without_id(field=None)

2.1. Contents 15

Topik Documentation, Release 0.2.2+0.g8727814.dirty

import_from_iterable(iterable, id_field=’text’, batch_size=500)
Load data into Elasticsearch from iterable.

iterable: generally a list of dicts, but possibly a list of strings This is your data. Your dictionary struc-
ture defines the schema of the elasticsearch index.

id_field: string identifier of field to hash for content ID. For list of dicts, a valid key value in the dic-
tionary is required. For list of strings, a dictionary with one key, “text” is created and used.

save(filename, saved_data=None)

synchronize(max_wait, field)

topik.intermediaries.raw_data.load_persisted_corpus(filename)

topik.intermediaries.raw_data.register_output(cls)

Module contents

topik.models package

Submodules

topik.models.lda module
class topik.models.lda.LDA(corpus_input=None, ntopics=10, load_filename=None, bi-

nary_filename=None, **kwargs)
Bases: topik.models.model_base.TopicModelBase

A high-level interface for an LDA (Latent Dirichlet Allocation) model.

Parameters corpus_input : CorpusBase-derived object

object fulfilling basic Corpus interface (preprocessed, tokenized text). see
topik.intermediaries.tokenized_corpus for more info.

ntopics : int

Number of topics to model

load_filename : None or str

If not None, this (JSON) file is read to determine parameters of the model persisted to
disk.

binary_filename : None or str

If not None, this file is loaded by Gensim to bring a disk-persisted model back into
memory.

Examples

>>> raw_data = read_input('{}/test_data_json_stream.json'.format(test_data_path), "abstract")
>>> processed_data = raw_data.tokenize() # preprocess returns a DigestedDocumentCollection
>>> model = LDA(processed_data, ntopics=3)

16 Chapter 2. Yet Another Topic Modeling Library

Topik Documentation, Release 0.2.2+0.g8727814.dirty

Attributes

corpus (CorpusBase-derived object, tokenized)
model (Gensim LdaModel instance)

get_model_name_with_parameters()

get_top_words(topn)

save(filename)

topik.models.model_base module
class topik.models.model_base.TopicModelBase

Bases: object

Abstract base class for topic models.

Ensures consistent interface across models, for base result display capabilities.

Attributes

_cor-
pus

(topik.intermediaries.digested_document_collection.DigestedDocumentCollection-derived object)
The input data for this model

_per-
sistor

(topik.intermediaries.persistor.Persistor object) The object responsible for persisting the state of
this model to disk. Persistor saves metadata that instructs load_model how to load the actual data.

get_model_name_with_parameters()
Abstract method. Primarily internal function, used to name configurations in persisted metadata for later
retrieval.

get_top_words(topn)
Abstract method. Implementations should collect top n words per topic, translate indices/ids to words.

Returns list of lists of tuples:

• outer list: topics

• inner lists: length topn collection of (weight, word) tuples

save(filename, saved_data)
Abstract method. Persist the model metadata and data to disk.

Implementations should both save their important data do disk with some known keyword (perhaps as
filename or server address details), and pass a dictionary to saved_data. The contents of this dictionary
will be passed to the class’ constructor as **kwargs.

Be sure to either call super(YourClass, self).save(filename, saved_data) or otherwise duplicate the base
level of functionality here.

Parameters filename : str

The filename of the JSON file to be saved, containing model and corpus metadata that
allow for reconstruction

saved_data : dict

Dictionary of metadata that will be fed to class __init__ method at load time. This
should include such things as number of topics modeled, binary filenames, and any
other relevant model parameters to recreate your current model.

2.1. Contents 17

Topik Documentation, Release 0.2.2+0.g8727814.dirty

termite_data(topn_words=15)
Generate the pandas dataframe input for the termite plot.

Parameters topn_words : int

number of words to include from each topic

Examples

>>> raw_data = read_input('{}/test_data_json_stream.json'.format(test_data_path), "abstract")
>>> processed_data = raw_data.tokenize() # tokenize returns a DigestedDocumentCollection
>>> # must set seed so that we get same topics each run
>>> import random
>>> import numpy
>>> random.seed(42)
>>> numpy.random.seed(42)
>>> model = registered_models["LDA"](processed_data, ntopics=3)
>>> model.termite_data(5)

topic weight word
0 0 0.005337 nm
1 0 0.005193 high
2 0 0.004622 films
3 0 0.004457 matrix
4 0 0.004194 electron
5 1 0.005109 properties
6 1 0.004654 size
7 1 0.004539 temperature
8 1 0.004499 nm
9 1 0.004248 mechanical
10 2 0.007994 high
11 2 0.006458 nm
12 2 0.005717 size
13 2 0.005399 materials
14 2 0.004734 phase

to_py_lda_vis()
topik.models.model_base.load_model(filename, model_name)

Loads a JSON file containing instructions on how to load model data.

Returns TopicModelBase-derived object

topik.models.model_base.register_model(cls)
Decorator function to register new model with global registry of models

topik.models.plsa module
class topik.models.plsa.PLSA(corpus=None, ntopics=2, load_filename=None, bi-

nary_filename=None)
Bases: topik.models.model_base.TopicModelBase

get_model_name_with_parameters()

get_top_words(topn)

inference(doc, max_iter=100)

post_prob_sim(docd, q)

save(filename)

train(max_iter=100)

18 Chapter 2. Yet Another Topic Modeling Library

Topik Documentation, Release 0.2.2+0.g8727814.dirty

Module contents

Submodules

topik.cli module

topik.readers module

topik.readers.read_input(source, content_field, source_type=’auto’, output_type=’dictionary’, out-
put_args=None, synchronous_wait=0, **kwargs)

Read data from given source into Topik’s internal data structures.

Parameters source : str

input data. Can be file path, directory, or server address.

content_field : str

Which field contains your data to be analyzed. Hash of this is used as id.

source_type : str

“auto” tries to figure out data type of source. Can be manually specified instead. options
for manual specification are [’solr’, ‘elastic’, ‘json_stream’, ‘large_json’, ‘folder’]

output_type : str

Internal format for handling user data. Current options are in the registered_outputs
dictionary. Default is DictionaryCorpus class. Specify alternatives using string key
from dictionary.

output_args : dict

Configuration to pass through to output

synchronous_wait : positive, real number

Time in seconds to wait for data to finish uploading to output (this happens asyn-
chronously.) Only relevant for some output types (“elastic”, not “dictionary”)

kwargs : any other arguments to pass to input parsers

Returns iterable output object

Examples

>>> raw_data = read_input(
... '{}/test_data_json_stream.json'.format(test_data_path),
... content_field="abstract")
>>> id, text = next(iter(raw_data))
>>> text == (
... u'Transition metal oxides are being considered as the next generation '+
... u'materials in field such as electronics and advanced catalysts; '+
... u'between them is Tantalum (V) Oxide; however, there are few reports '+
... u'for the synthesis of this material at the nanometer size which could '+
... u'have unusual properties. Hence, in this work we present the '+
... u'synthesis of Ta2O5 nanorods by sol gel method using DNA as structure '+
... u'directing agent, the size of the nanorods was of the order of 40 to '+
... u'100 nm in diameter and several microns in length; this easy method '+
... u'can be useful in the preparation of nanomaterials for electronics, '+

2.1. Contents 19

Topik Documentation, Release 0.2.2+0.g8727814.dirty

... u'biomedical applications as well as catalysts.')
True

topik.run module

topik.run.run_model(data_source, source_type=’auto’, year_field=None, start_year=None,
stop_year=None, content_field=None, tokenizer=’simple’, n_topics=10,
dir_path=’./topic_model’, model=’LDA’, termite_plot=True, output_file=False,
ldavis=False, seed=42, **kwargs)

Run your data through all topik functionality and save all results to a specified directory.

Parameters data_source : str

Input data (e.g. file or folder or solr/elasticsearch instance).

source_type : {‘json_stream’, ‘folder_files’, ‘json_large’, ‘solr’, ‘elastic’}.

The format of your data input. Currently available a json stream or a folder containing
text files. Default is ‘json_stream’

year_field : str

The field name (if any) that contains the year associated with each document (for filter-
ing).

start_year : int

For beginning of range filter on year_field values

stop_year : int

For beginning of range filter on year_field values

content_field : string

The primary text field to parse.

tokenizer : {‘simple’, ‘collocations’, ‘entities’, ‘mixed’}

The type of tokenizer to use. Default is ‘simple’.

n_topics : int

Number of topics to find in your data

dir_path : str

Directory path to store all topic modeling results files. Default is ./topic_model.

model : {‘LDA’, ‘PLSA’}.

Statistical modeling algorithm to use. Default ‘LDA’.

termite_plot : bool

Generate termite plot of your model if True. Default is True.

output_file : bool

Generate a final summary csv file of your results. For each document: text, tokens,
lda_probabilities and topic.

ldavis : bool

Generate an interactive data visualization of your topics. Default is False.

20 Chapter 2. Yet Another Topic Modeling Library

Topik Documentation, Release 0.2.2+0.g8727814.dirty

seed : int

Set random number generator to seed, to be able to reproduce results. Default 42.

**kwargs : additional keyword arguments, passed through to each individual step

topik.tokenizers module

topik.tokenizers.collect_bigrams_and_trigrams(collection, top_n=10000,
min_length=1, min_bigram_freq=50,
min_trigram_freq=20, stopwords=None)

collects bigrams and trigrams from collection of documents. Input to collocation tokenizer.

bigrams are pairs of words that recur in the collection; trigrams are triplets.

Parameters collection : iterable of str

body of documents to examine

top_n : int

limit results to this many entries

min_length : int

Minimum length of any single word

min_bigram_freq : int

threshold of when to consider a pair of words as a recognized bigram

min_trigram_freq : int

threshold of when to consider a triplet of words as a recognized trigram

stopwords : None or iterable of str

Collection of words to ignore as tokens

Examples

>>> from topik.readers import read_input
>>> raw_data = read_input(
... '{}/test_data_json_stream.json'.format(test_data_path),
... content_field="abstract")
>>> bigrams, trigrams = collect_bigrams_and_trigrams(raw_data, min_bigram_freq=5, min_trigram_freq=3)
>>> bigrams.pattern
u'(free standing|ac electrodeposition|centered cubic|spatial resolution|vapor deposition|wear resistance|plastic deformation|electrical conductivity|field magnets|v o|transmission electron|x ray|et al|ray diffraction|electron microscopy|room temperature|diffraction xrd|electron microscope|results indicate|scanning electron|m s|doped zno|microscopy tem|polymer matrix|size distribution|mechanical properties|grain size|diameters nm|high spatial|particle size|high resolution|ni al|diameter nm|range nm|high field|high strength|c c)'
>>> trigrams.pattern
u'(differential scanning calorimetry|face centered cubic|ray microanalysis analytical|physical vapor deposition|transmission electron microscopy|x ray diffraction|microanalysis analytical electron|chemical vapor deposition|high aspect ratio|analytical electron microscope|ray diffraction xrd|x ray microanalysis|high spatial resolution|high field magnets|atomic force microscopy|electron microscopy tem|narrow size distribution|scanning electron microscopy|building high field|silicon oxide nanowires|particle size nm)'

topik.tokenizers.collect_entities(collection, freq_min=2, freq_max=10000)
Return noun phrases from collection of documents.

Parameters collection: Corpus-base derived object or iterable collection of raw text

freq_min: int

Minimum frequency of a noun phrase occurrences in order to retrieve it. Default is 2.

freq_max: int

2.1. Contents 21

Topik Documentation, Release 0.2.2+0.g8727814.dirty

Maximum frequency of a noun phrase occurrences in order to retrieve it. Default is
10000.

topik.tokenizers.tokenize_collocation(text, patterns, min_length=1, stopwords=None)
A text tokenizer that includes collocations(bigrams and trigrams).

A collocation is sequence of words or terms that co-occur more often than would be expected by chance. This
function breaks a raw document up into tokens based on a pre-established collection of bigrams and trigrams.
This collection is derived from a body of many documents, and must be obtained in a prior step using the
collect_bigrams_and_trigrams function.

Uses nltk.collocations.TrigramCollocationFinder to find trigrams and bigrams.

Parameters text : str

A single document’s text to be tokenized

patterns: tuple of compiled regex object to find n-grams

Obtained from collect_bigrams_and_trigrams function

min_length : int

Minimum length of any single word

stopwords : None or iterable of str

Collection of words to ignore as tokens

Examples

>>> from topik.readers import read_input
>>> id_documents = read_input('{}/test_data_json_stream.json'.format(test_data_path), content_field="abstract")
>>> patterns = collect_bigrams_and_trigrams(id_documents, min_bigram_freq=2, min_trigram_freq=2)
>>> id, doc_text = next(iter(id_documents))
>>> tokenized_text = tokenize_collocation(doc_text, patterns)
>>> tokenized_text
[u'transition_metal', u'oxides', u'considered', u'generation', u'materials', u'field', u'electronics', u'advanced', u'catalysts', u'tantalum', u'v_oxide', u'reports', u'synthesis_material', u'nanometer_size', u'unusual', u'properties', u'work_present', u'synthesis', u'ta', u'o', u'nanorods', u'sol', u'gel', u'method', u'dna', u'structure', u'directing', u'agent', u'size', u'nanorods', u'order', u'nm_diameter', u'microns', u'length', u'easy', u'method', u'useful', u'preparation', u'nanomaterials', u'electronics', u'biomedical', u'applications', u'catalysts']

topik.tokenizers.tokenize_entities(text, entities, min_length=1, stopwords=None)
A tokenizer that extracts noun phrases from text.

Requires that you first establish entities using the collect_entities function

Parameters text : str

A single document’s text to be tokenized

entities : iterable of str

Collection of noun phrases, obtained from collect_entities function

min_length : int

Minimum length of any single word

stopwords : None or iterable of str

Collection of words to ignore as tokens

22 Chapter 2. Yet Another Topic Modeling Library

Topik Documentation, Release 0.2.2+0.g8727814.dirty

Examples

>>> from topik.readers import read_input
>>> id_documents = read_input('{}/test_data_json_stream.json'.format(test_data_path), "abstract")
>>> entities = collect_entities(id_documents)
>>> len(entities)
220
>>> i = iter(id_documents)
>>> _, doc_text = next(i)
>>> doc_text
u'Transition metal oxides are being considered as the next generation materials in field such as electronics and advanced catalysts; between them is Tantalum (V) Oxide; however, there are few reports for the synthesis of this material at the nanometer size which could have unusual properties. Hence, in this work we present the synthesis of Ta2O5 nanorods by sol gel method using DNA as structure directing agent, the size of the nanorods was of the order of 40 to 100 nm in diameter and several microns in length; this easy method can be useful in the preparation of nanomaterials for electronics, biomedical applications as well as catalysts.'
>>> tokenized_text = tokenize_entities(doc_text, entities)
>>> tokenized_text
[u'transition']

topik.tokenizers.tokenize_mixed(text, entities, min_length=1, stopwords=None)
A text tokenizer that retrieves entities (‘noun phrases’) first and simple words for the rest of the text.

Parameters text : str

A single document’s text to be tokenized

entities : iterable of str

Collection of noun phrases, obtained from collect_entities function

min_length : int

Minimum length of any single word

stopwords: None or iterable of str

Collection of words to ignore as tokens

Examples

>>> from topik.readers import read_input
>>> raw_data = read_input('{}/test_data_json_stream.json'.format(test_data_path), content_field="abstract")
>>> entities = collect_entities(raw_data)
>>> id, text = next(iter(raw_data))
>>> tokenized_text = tokenize_mixed(text, entities, min_length=3)
>>> tokenized_text
[u'transition', u'metal', u'oxides', u'generation', u'materials', u'tantalum', u'oxide', u'nanometer', u'size', u'unusual', u'properties', u'sol', u'gel', u'method', u'dna', u'easy', u'method', u'biomedical', u'applications']

topik.tokenizers.tokenize_simple(text, min_length=1, stopwords=None)
A text tokenizer that simply lowercases, matches alphabetic characters and removes stopwords.

Parameters text : str

A single document’s text to be tokenized

entities : iterable of str

Collection of noun phrases, obtained from collect_entities function

min_length : int

Minimum length of any single word

stopwords: None or iterable of str

Collection of words to ignore as tokens

2.1. Contents 23

Topik Documentation, Release 0.2.2+0.g8727814.dirty

Examples

>>> from topik.readers import read_input
>>> id_documents = read_input(
... '{}/test_data_json_stream.json'.format(test_data_path),
... content_field="abstract")
>>> id, doc_text = next(iter(id_documents))
>>> doc_text
u'Transition metal oxides are being considered as the next generation materials in field such as electronics and advanced catalysts; between them is Tantalum (V) Oxide; however, there are few reports for the synthesis of this material at the nanometer size which could have unusual properties. Hence, in this work we present the synthesis of Ta2O5 nanorods by sol gel method using DNA as structure directing agent, the size of the nanorods was of the order of 40 to 100 nm in diameter and several microns in length; this easy method can be useful in the preparation of nanomaterials for electronics, biomedical applications as well as catalysts.'
>>> tokens = tokenize_simple(doc_text)
>>> tokens
[u'transition', u'metal', u'oxides', u'considered', u'generation', u'materials', u'field', u'electronics', u'advanced', u'catalysts', u'tantalum', u'v', u'oxide', u'reports', u'synthesis', u'material', u'nanometer', u'size', u'unusual', u'properties', u'work', u'present', u'synthesis', u'ta', u'o', u'nanorods', u'sol', u'gel', u'method', u'dna', u'structure', u'directing', u'agent', u'size', u'nanorods', u'order', u'nm', u'diameter', u'microns', u'length', u'easy', u'method', u'useful', u'preparation', u'nanomaterials', u'electronics', u'biomedical', u'applications', u'catalysts']

topik.utils module

topik.viz module

class topik.viz.Termite(input_file, title)
Bases: object

A Bokeh Termite Visualization for LDA results analysis.

Parameters input_file : str or pandas DataFrame

A pandas dataframe from a topik model get_termite_data() containing columns “word”,
“topic” and “weight”. May also be a string, in which case the string is a filename of a
csv file with the above columns.

title : str

The title for your termite plot

Examples

>>> termite = Termite("{}/termite.csv".format(test_data_path),
... "My lda results")
>>> termite.plot('my_termite.html')

plot(output_file=’termite.html’)

topik.viz.plot_lda_vis(model_data, mode=’show’, filename=None)
Designed to work with to_py_lda_vis() in the model classes.

Module contents

2.2 Useful Topic Modeling Resources

• Topic modeling, David M. Blei

2.2.1 Python libraries

• Gensim

• Pattern

24 Chapter 2. Yet Another Topic Modeling Library

http://www.cs.princeton.edu/~blei/topicmodeling.html
https://radimrehurek.com/gensim/
http://www.clips.ua.ac.be/pattern

Topik Documentation, Release 0.2.2+0.g8727814.dirty

• TextBlob

• NLTK

2.2.2 R libraries

• lda

• LDAvis

2.2.3 Other

• Ditop

2.2.4 Papers

• Probabilistic Topic Models by David M.Blei

2.2. Useful Topic Modeling Resources 25

http://textblob.readthedocs.org/en/dev/
http://www.nltk.org/
http://cran.r-project.org/web/packages/lda/
https://github.com/cpsievert/LDAvis
http://ditop.hs8.de/
http://www.cs.princeton.edu/~blei/papers/Blei2012.pdf

Topik Documentation, Release 0.2.2+0.g8727814.dirty

26 Chapter 2. Yet Another Topic Modeling Library

CHAPTER 3

License Agreement

topik is distributed under the BSD 3-Clause license.

3.1 Indices and tables

• genindex

• modindex

• search

3.2 Footnotes

27

http://opensource.org/licenses/BSD-3-Clause

Topik Documentation, Release 0.2.2+0.g8727814.dirty

28 Chapter 3. License Agreement

Python Module Index

t
topik, 24
topik.cli, 19
topik.intermediaries, 16
topik.intermediaries.digested_document_collection,

14
topik.intermediaries.persistence, 14
topik.intermediaries.raw_data, 14
topik.models, 19
topik.models.lda, 16
topik.models.model_base, 17
topik.models.plsa, 18
topik.readers, 19
topik.run, 20
topik.tokenizers, 21
topik.viz, 24

29

Topik Documentation, Release 0.2.2+0.g8727814.dirty

30 Python Module Index

Index

A
append_to_record() (topik.intermediaries.raw_data.CorpusInterface

method), 14
append_to_record() (topik.intermediaries.raw_data.DictionaryCorpus

method), 15
append_to_record() (topik.intermediaries.raw_data.ElasticSearchCorpus

method), 15

C
class_key() (topik.intermediaries.raw_data.CorpusInterface

class method), 14
class_key() (topik.intermediaries.raw_data.DictionaryCorpus

class method), 15
class_key() (topik.intermediaries.raw_data.ElasticSearchCorpus

class method), 15
collect_bigrams_and_trigrams() (in module

topik.tokenizers), 21
collect_entities() (in module topik.tokenizers), 21
convert_date_field_and_reindex()

(topik.intermediaries.raw_data.ElasticSearchCorpus
method), 15

CorpusInterface (class in topik.intermediaries.raw_data),
14

D
DictionaryCorpus (class in

topik.intermediaries.raw_data), 15

E
ElasticSearchCorpus (class in

topik.intermediaries.raw_data), 15

F
filter_string (topik.intermediaries.raw_data.CorpusInterface

attribute), 14
filter_string (topik.intermediaries.raw_data.DictionaryCorpus

attribute), 15
filter_string (topik.intermediaries.raw_data.ElasticSearchCorpus

attribute), 15

G
get_corpus_dict() (topik.intermediaries.persistence.Persistor

method), 14
get_date_filtered_data() (topik.intermediaries.raw_data.CorpusInterface

method), 14
get_date_filtered_data() (topik.intermediaries.raw_data.DictionaryCorpus

method), 15
get_date_filtered_data() (topik.intermediaries.raw_data.ElasticSearchCorpus

method), 15
get_field() (topik.intermediaries.raw_data.DictionaryCorpus

method), 15
get_field() (topik.intermediaries.raw_data.ElasticSearchCorpus

method), 15
get_generator_without_id()

(topik.intermediaries.raw_data.CorpusInterface
method), 14

get_generator_without_id()
(topik.intermediaries.raw_data.DictionaryCorpus
method), 15

get_generator_without_id()
(topik.intermediaries.raw_data.ElasticSearchCorpus
method), 15

get_model_details() (topik.intermediaries.persistence.Persistor
method), 14

get_model_name_with_parameters()
(topik.models.lda.LDA method), 17

get_model_name_with_parameters()
(topik.models.model_base.TopicModelBase
method), 17

get_model_name_with_parameters()
(topik.models.plsa.PLSA method), 18

get_top_words() (topik.models.lda.LDA method), 17
get_top_words() (topik.models.model_base.TopicModelBase

method), 17
get_top_words() (topik.models.plsa.PLSA method), 18

I
import_from_iterable() (topik.intermediaries.raw_data.DictionaryCorpus

method), 15
import_from_iterable() (topik.intermediaries.raw_data.ElasticSearchCorpus

31

Topik Documentation, Release 0.2.2+0.g8727814.dirty

method), 15
inference() (topik.models.plsa.PLSA method), 18

L
LDA (class in topik.models.lda), 16
list_available_models() (topik.intermediaries.persistence.Persistor

method), 14
load_data() (topik.intermediaries.persistence.Persistor

method), 14
load_model() (in module topik.models.model_base), 18
load_persisted_corpus() (in module

topik.intermediaries.raw_data), 16

P
persist_data() (topik.intermediaries.persistence.Persistor

method), 14
Persistor (class in topik.intermediaries.persistence), 14
plot() (topik.viz.Termite method), 24
plot_lda_vis() (in module topik.viz), 24
PLSA (class in topik.models.plsa), 18
post_prob_sim() (topik.models.plsa.PLSA method), 18

R
read_input() (in module topik.readers), 19
register_model() (in module topik.models.model_base),

18
register_output() (in module

topik.intermediaries.raw_data), 16
run_model() (in module topik.run), 20

S
save() (topik.intermediaries.raw_data.CorpusInterface

method), 14
save() (topik.intermediaries.raw_data.DictionaryCorpus

method), 15
save() (topik.intermediaries.raw_data.ElasticSearchCorpus

method), 16
save() (topik.models.lda.LDA method), 17
save() (topik.models.model_base.TopicModelBase

method), 17
save() (topik.models.plsa.PLSA method), 18
store_corpus() (topik.intermediaries.persistence.Persistor

method), 14
store_model() (topik.intermediaries.persistence.Persistor

method), 14
synchronize() (topik.intermediaries.raw_data.CorpusInterface

method), 14
synchronize() (topik.intermediaries.raw_data.ElasticSearchCorpus

method), 16

T
Termite (class in topik.viz), 24
termite_data() (topik.models.model_base.TopicModelBase

method), 17

to_py_lda_vis() (topik.models.model_base.TopicModelBase
method), 18

tokenize() (topik.intermediaries.raw_data.CorpusInterface
method), 15

tokenize_collocation() (in module topik.tokenizers), 22
tokenize_entities() (in module topik.tokenizers), 22
tokenize_mixed() (in module topik.tokenizers), 23
tokenize_simple() (in module topik.tokenizers), 23
TopicModelBase (class in topik.models.model_base), 17
topik (module), 24
topik.cli (module), 19
topik.intermediaries (module), 16
topik.intermediaries.digested_document_collection

(module), 14
topik.intermediaries.persistence (module), 14
topik.intermediaries.raw_data (module), 14
topik.models (module), 19
topik.models.lda (module), 16
topik.models.model_base (module), 17
topik.models.plsa (module), 18
topik.readers (module), 19
topik.run (module), 20
topik.tokenizers (module), 21
topik.viz (module), 24
train() (topik.models.plsa.PLSA method), 18

32 Index

	What's a topic model?
	Yet Another Topic Modeling Library
	Contents
	Useful Topic Modeling Resources

	License Agreement
	Indices and tables
	Footnotes

	Python Module Index

